fbpx

Types of Mobile Robots – What to use where?

Poovika Prakash

14th Apr, 2020

application of mobile robots

Mobile robots are capable of locomotion, they move around their environment and are not fixed to one physical location. They can be classified in two different ways; by the environment wherein they work and by the device, they use to move.

Let’s discuss different examples of different environments wherein mobile robots can work:

  • Underwater robots or autonomous underwater vehicles (AUVs) which can direct themselves and travel through water. AUVs are also called as Swimming Robots.
  • Aerial Robots are autonomous micro air vehicles, specializing in their guidance and control in the air.
  • Land-based robots categorized as wheeled robots, tracked robots, and legged robots. These are more complex types of robots and are autonomous humanoid as it requires many degrees of freedom and synchronization. Also known as unnamed vehicle group (UGVs), they navigate on inside the house or dry land.
  • Delivery & Transportation robots can move materials and supplies through work with the capability of moving around by navigating through an uncontrolled environment with or without the need for the physical or electro-mechanical guidance system.

Mobile robots can be autonomous or non-autonomous, in order to do the achieve motion, it relies either on guidance devices such as sensors or physical devices that allow them to travel a pre-defined navigation route in relatively controlled space.

Hence the two types of mobile robots are:

  1. Non- Autonomous guided mobile robots
  2. Autonomous mobile robots

Non – Autonomous Mobile Robots:  Guided mobile robots or non-autonomous mobile robots require some sort of guidance system or instruction to make a movement that allows them to travel pre-defined navigation maps in a controlled environment. The pre-defined navigation map such as magnetic tape, bar codes, wire or sensors installed on the environment’s floor that creating an inflexible environment.  These are the following types:

  1. Autonomous Guided Vehicle (AGV): This AGV requires the external guidance system in the form of magnetic strips to travel. These follow a rigid form of the preset route. Typical AGV applications incorporate transportation of raw materials, work-in-progress, and finished goods in support of manufacturing production lines, and storage/retrieval or other movements in support of picking in warehousing and distribution applications. AGVs provide automated material movement for a variety of industries including Automotive, Food & Beverage, Chemical, Hospitals, Manufacturing, Pharmaceutical, Paper.
  2. Rail Guided Vehicle/Cart (RGV/RGC): RGV/RGC is a fast, flexible and easily installed material transport system that travels at a predefined path guided by rails or tracks. RGC has separate input/output stations that allow it to perform multiple operations at once. These mobile robots are an efficient, cost-effective and fast option for complex sorting applications.
  3. Guided Fork-lifts: This specific AGV type is inspired by the conventional human manned forklifts. These forklifts are becoming increasingly complex and intelligent full of autonomy for some applications. These could manned/unmanned traveling with the help of external devices such as tablets, human, etc. The forklift AGV is designed to provide both horizontal and vertical movement of the load.

Autonomous Mobile Robots: Autonomous mobile robots (AMR) are just like humans; can make their own decisions and then perform tasks accordingly. Autonomous robots can perceive their environment and remember it. Based on this info they navigate in a controlled environment without any predefined path or electro-magnetic guidance map, that way they offer flexibility to a large extent. AMRs also optimize the travel distance by calculating the shortest path for every mission & drive efficiency in the warehouse.

Let’s look into a few of its applications:

  1. AMR for Good-to-picking: This includes robots bringing mobile shelf units filled with items to a workstation. In this case, pickers remain at their workstations while software-driven AMRs deliver shelves with different materials directly to the order pickers’ workstation.
  2. Picking Assist Autonomous Mobile Robots: In this case, the robots travel to pick locations, where operators deliver (“pick”) goods based on the robot’s needs. They are an AMR base with an operator interface that provides information about picking order. The robot tells the operator “I want this item and here is where you can find it”. The user interface is also interactive, being possible to provide further info about the product or receiving info from the operator such as “picking accomplished”.
  3. Unmanned Aerial Vehicles (UAVs): These are basically drones moving large products through the air in distribution centers with the help of RFID-scanning technology to offer real-time inventory visibility in the warehouse. Guided autonomously by remote control, UAVs can sense their environment and navigate on their own.
  4. Sorting Robots: These robots play an important role in high speed sorting esp in fulfilment centers. These robots work on a mezzanine with chutes/rabbit holes for location or order positions. Sortation is easily achieved by utilizing a fleet of sorting robots that sort the orders by dumping them through chutes/rabbit holes. The dropped orders or parcels are collected in sacks, gaylords or containers, which will be shipped directly to customers.

Now, along with commercial and industrial sectors, mobile robots are a common sight in public sectors such as hospitals and airports as well. With the evolution of advanced navigation systems & enhanced safety features they are only a step away to become human allies in our everyday activities.

AGV AMR Artificial Intelligence Autonomous mobile robot Mobile Robots Warehouse Robots

Get It First

Stay updated and get articles straight in your inbox

Leave a Reply

Your email address will not be published. Required fields are marked *